Definition: Patterns (real or mathematical) which look similar at different scales, for example the network of airways in the lung which shows similar branching patterns at progressively higher magnifications. Natural fractals are self-similar across a finite range of scales while mathematical fractals are the same across an infinite range. Many natural, including biological, structures are fractal (or fractal-like). Fractals are related to "chaos" (see NONLINEAR DYNAMICS) in that chaotic processes can produce fractal structures in nature, and appropriate representations of chaotic processes usually reveal self-similarity over time.

patterns which look similar at different magnifications; used in math & theoret models
See AlsoNonlinear Dynamics